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Abstract

This paper presents an edge-based smoothed finite element method (ES-FEM) to significantly improve the accuracy of

the finite element method (FEM) without much changing to the standard FEM settings. The ES-FEM can use different

shape of elements but prefers triangular elements that can be much easily generated automatically for complicated

domains. In the ES-FEM, the system stiffness matrix is computed using strains smoothed over the smoothing domains

associated with the edges of the triangles. Intensive numerical results demonstrated that the ES-FEM possesses the

following excellent properties: (1) the ES-FEMmodel possesses a close-to-exact stiffness: it is much softer than the ‘‘overly-

stiff’’ FEM and much stiffer than the ‘‘overly-soft’’ NS-FEM model; (2) the results are often found superconvergence and

ultra-accurate: much more accurate than the linear triangular elements of FEM and even more accurate than those of the

FEM using quadrilateral elements with the same sets of nodes; (3) there are no spurious non-zeros energy modes found and

hence the method is also temporally stable and works well for vibration analysis and (4) the implementation of the method

is straightforward and no penalty parameter is used, and the computational efficiency is better than the FEM using the

same sets of nodes. In addition, a novel domain-based selective scheme is proposed leading to a combined ES/NS-FEM

model that is immune from volumetric locking and hence works very well for nearly incompressible materials. These

properties of the ES-FEM are confirmed using examples of static, free and forced vibration analyses of solids.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The strain smoothing technique has been proposed by Chen et al. [1] to stabilize the solutions in the nodal
integrated meshfree methods and then applied to the natural element method [2]. Liu et al. have applied this
technique and extended it to a generalized smoothing technique allowing discontinuous displacement
functions [22]. The generalized smoothing technique forms the theoretical foundation for the linear
conforming point interpolation method (LC-PIM) using incompatible PIM shape functions created by simple
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point interpolations based on a set of local nodes that can overlap [3]. Since the smoothed operation in the
LC-PIM is node-based, it is also called node-based smoothed PIM (or NS-PIM). The linearly conforming
radial point interpolation method (LC-RPIM or NS-RPIM) using RPIM shape functions has also been
formulated that works for extremely irregularly distributed nodes [4]. Applying the strain smoothing
technique to the finite elements leads to the element-based smoothed finite element method (SFEM) [5–7] and
the node-based smoothed finite element method (NS-FEM) [8]. The SFEM uses cell-based smoothing
domains created by further dividing the elements (quadrilateral or n-sided polygonal) into one or more
smoothing cells (SC), as shown in Fig. 1. For the quadrilateral elements, when the number of SC of the
elements equals 1, the SFEM solution is proven variationally consistent and has the same properties with those
of FEM using reduced integration; when SC approaches infinity, the SFEM solution will approach the
solution of the standard displacement compatible FEM model. It is suggested that there exists an optimal
number of SC such that the SFEM solution is closest to the exact solution. In the contrast, in the NS-FEM,
the strain smoothing domains and the integration of the weak form are performed over the domains
associated with nodes, and methods can be applied easily to triangular, 4-node quadrilateral and even n-sided
polygonal elements. For n-sided polygonal elements, the domain O(k) associated with the node k is created by
connecting sequentially the mid-edge-point to the central points of the surrounding n-sided polygonal
elements of the node k as shown in Fig. 2. When only linear triangular elements are used, the NS-FEM
produces the same results as the method proposed by Dohrmann [9] or to the NS-PIM [3] using linear shape
functions. Liu et al. [10,11] have provided an intuitive explanation and showed numerically that the NS-PIM
can produce an upper bound to the exact solution in the strain energy, when a reasonably fine mesh is used.
The upper bound property was also found in the NS-FEM [8]. Both upper and lower bounds in the strain
energy for elastic solid mechanics problems can now be obtained by combining the NS-FEM with the SFEM
(for n-sided polygonal elements) or with the FEM (for triangular or 4-node quadrilateral elements). In
addition, a nearly exact solution in strain energy using triangular and tetrahedral elements is also proposed by
Liu et al. [24] by combining a scale factor a 2 0; 1½ � with the NS-FEM and the FEM to give a so-called the
alpha Finite Element Method (aFEM). However, it is also found that the NS-FEM behaves ‘‘overly-soft’’ in
contrary to the compatible FEM mode that is known ‘‘overly-stiff’’. The overly-soft behavior leads to
instability similar to those found in the nodal integration methods [12–14]. The instability can be clearly shown
as spurious non-zero energy modes in free vibration analyses, and as numerically unstable solution in forced
vibration analyses.
y 

x

y 

x

Fig. 1. Division of element into the smoothing cells (SC) in the SFEM. (a) SC ¼ 1, (b) SC ¼ 2, (c) SC ¼ 3, (d) SC ¼ 4, (e) SC ¼ 8 and (f)

SC ¼ 16.
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Fig. 2. n-Sided polygonal elements and the smoothing domains associated with nodes in the NS-FEM.
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Fig. 3. Triangular elements and the smoothing domains associated with edges in the ES-FEM.
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In this paper, we proposed a novel edge-based smoothed finite element method (ES-FEM) that is stable
(no spurious non-zero energy modes) and more accurate compared to above mentioned methods including the
FEM. In the ES-FEM, strain smoothing domains and the integration of the weak form are based on domains
associated with edges of the elements. The smoothing domain of an edge is created by connecting two
endpoints of the edge to two centroids of two adjacent elements that can be triangular, quadrilateral, or
generally polygonal elements as shown in Figs. 3 and 4. The numerical results using triangular elements
demonstrated that the ES-FEM gives very accurate solution and is even more accurate than the standard
FEM using quadrilateral elements for both 2D static, free and forced vibration analyses of solid mechanics
problems.

A novel domain-based selective scheme is also proposed in this paper leading to a combined ES/NS-FEM
model that is immune from the volumetric locking, and works very well for solids of nearly incompressible
materials. Most importantly, the present ES-FEM method eliminates spurious non-zero energy modes and
hence is well suited for dynamics problems. The method does not use any penalty parameters and can be easily
developed for 3D problems using tetrahedral elements. In addition, a mesh of mixed general n-sided polygonal
elements (including triangular elements) can be used in an ES-FEM model, and hence relieve the burden on
the generation of high quality meshes required in FEM.
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(b) n-sided polygonal elements.
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2. The idea and formulation of the ES-FEM

This section formulates the ES-FEM for 2D problems using triangular elements. The formulation is largely
the same as that in the FEM, except the integration procedure of calculating the stiffness matrix.

Consider a deformable body occupying domain O in motion, subjected to body forces b, external applied
tractions t on boundary Gt and displacement boundary conditions u ¼ u on Gu. It undergoes arbitrary virtual
displacements dd which accordingly give rise to compatible virtual strains de and internal displacements du. If
the inertial and damping forces are also considered in the dynamic equilibrium equations, the principle of
virtual work requires that Z

O
deTDedO�

Z
O
duT½b� r€u� c_u�dO�

Z
Gt

duTtdG ¼ 0 (1)

where D is a matrix of material constants that is symmetric positive definite (SPD).
By means of the spatial discretization procedure in the FEM [15–17], the problem domain is divided into Ne

elements. The virtual displacements and the compatible strains e ¼ rsu within any element can be written as

duh ¼
XNP

I¼1

NIddI ; uh ¼
XNP

I¼1

NIdI (2)

deh ¼
X

I

BIddI ; eh ¼
X

I

BIdI (3)

where NP is the number of the nodal variables of the element, dI ¼ [uI vI]
T is the nodal displacement vector,

NI ¼
NI 0

0 NI

" #
is the shape function matrix and B is the standard (compatible) displacement gradient

matrix. In 2D linear elastic problems it is given as

BI ¼

NI 0x 0

0 NI 0y

NI 0y NI 0x

2
64

3
75 (4)
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The energy assembly process givesZ
O
ddTBTDedO�

Z
O
ddTNT½b� r€u� c_u�dO�

Z
Gt

ddTNTtdG ¼ 0 (5)

Since the expressions hold for any arbitrary virtual displacements dd, we obtainZ
O
BTDedO�

Z
O
NT½b� r€u� c_u�dO�

Z
Gt

NTtdG ¼ 0 (6)

The resultant discrete governing equation can be written as

M€dþ C_dþ Kd ¼ f (7)

where d is the vector of general nodal displacements and

K ¼

Z
O
BTDB dO (8)

f ¼

Z
O
NTbdOþ

Z
Gt

NTtdG (9)

M ¼

Z
O
NTqNdO (10)

C ¼

Z
O
NTcNdO (11)

It is clear that the formulation given above is the same as that of standard FEM. Similar to the standard
FEM, the ES-FEM uses a mesh of elements. When triangular elements are used, the shape functions used in
the ES-FEM is also the same as that in FEM.

In the ES-FEM, however, we do not use the compatible strains (3) but strains ‘‘smoothed’’ over local
smoothing domains, and naturally the integration related to the stiffness matrix K is no longer based on
elements, but these smoothing domains. These local smoothing domains are constructed based on edges of the
elements such that O ¼ Oð1Þ [ Oð2Þ [ � � � [ OðNsÞ and OðiÞ [ OðjÞa;, i 6¼j, in which Ns is the total number of edges
(sides) located in the entire problem domain. For triangular elements, the smoothing domain O(k) associated
with the edge k is created by connecting two endpoints of the edge to two centroids of two adjacent elements as
shown in Fig. 3. Extending the smoothing domain O(k) associated with the edge k to quadrilateral or n-sided
polygonal elements is straightforward as shown in Fig. 4.

Using the edge-based smoothing domains, smoothed strains can now be obtained using the compatible

strains e ¼ rsu through the following smoothing operation over domain O(k) associated with edge k:

~ek ¼

Z
OðkÞ

eðxÞFkðxÞdO ¼
Z
OðkÞ
rsuðxÞFkðxÞdO (12)

where Fk(x) is a given smoothing function that satisfies at least unity property:Z
OðkÞ

FkðxÞdO ¼ 1 (13)

In this work, we use the simplest local constant smoothing function

FkðxÞ ¼
1=AðkÞ; x 2 OðkÞ

0; xeOðkÞ

(
(14)

where A(k) is the area of the smoothing domain O(k) and is calculated by

AðkÞ ¼

Z
OðkÞ

dO ¼
1

3

XN ðkÞe

j¼1

AðjÞe (15)
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where N ðkÞe is the number of elements around the edge k (N ðkÞe ¼ 1 for the boundary edges and N ðkÞe ¼ 2 for
inner edges as shown in Fig. 3) and AðjÞe is the area of the jth element around the edge k.

Using the constant smoothing function (14), the smoothed strains obtained using Eq. (12) are constant in
the smoothing domain. Therefore, the stiffness matrix K in Eq. (8) becomes the smoothed stiffness matrix ~K in
the ES-FEM, and is assembled by a similar process as in the FEM:

~K ¼
XNs

k¼1

~KðkÞ (16)

where ~KðkÞ is the smoothed stiffness matrix calculated on the smoothing domains O(k) associated with the
edge k. The details of calculating ~KðkÞ are given below.

Substituting Eq. (2) into Eq. (12), the smoothed strain on the domain O(k) associated with edge k can be
written in the following matrix form of nodal displacements:

~ek ¼
X

I2N
ðkÞ
n

~BI ðxkÞdI (17)

where N ðkÞn is the total number of nodes of elements containing the common edge i (N ðkÞn ¼ 3 for boundary
edges and N ðkÞn ¼ 4 for inner edges as shown in Fig. 3) and ~BI ðxkÞ, that is termed as the smoothed strain matrix

on the domain O(k), is calculated numerically by an assembly process similarly as in the FEM

~BI ðxkÞ ¼
1

AðkÞ

XN ðkÞe

j¼1

1

3
AðjÞe Bj (18)

where Bj is the strain gradient matrix of the jth element around the edge k.
Due to the use of the triangular elements with the linear shape functions, the entries of matrix Bj are

constants, and so are the entries of matrix ~BI ðxkÞ. Now, the smoothing stiffness matrix ~KðkÞ in Eq. (16) is
calculated by

~KðkÞ ¼

Z
OðkÞ

~B
T

I D
~BJ dO ¼ ~B

T

I D
~BJAðkÞ (19)

Note that with this formulation, only the area and the usual ‘‘compatible’’ strain matrices Bj of triangular
elements are needed to calculate the system stiffness matrix for the ES-FEM. This formulation is quite
straightforward to extend for the 3D problems using tetrahedral elements.

Applying the divergence theorem, the smoothed strain matrix ~BI ðxkÞ on the domain O(k) can be calculated in
another way by

~BI ðxkÞ ¼

~bIxðxkÞ 0

0 ~bIyðxkÞ

~bIyðxkÞ
~bIxðxkÞ

2
664

3
775 (20)

with

~bIhðxkÞ ¼
1

AðkÞ

Z
GðkÞ

NI ðxÞn
ðkÞ
h ðxÞdG ðh ¼ x; yÞ (21)

where G(k) is the boundary of the smoothing domain O(k) as shown in Fig. 3 and n(k)(x) is the outward normal
vector matrix on the boundary G(k) and has the form

nðkÞðxÞ ¼

nðkÞx 0

0 nðkÞy

nðkÞy nðkÞx

2
664

3
775 (22)

When a linear compatible displacement field along the boundary G(k) is used, one Gaussian point is
sufficient for line integration along each segment of boundary Gi

(k) of O(k), the above equation can be further
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simplified to its algebraic form

~bIhðxkÞ ¼
1

AðkÞ

XM
i¼1

NI ðx
GP
i Þn

ðkÞ
ih l
ðkÞ
i ðh ¼ x; yÞ (23)

where M is the total number of the boundary segments of Gi
(k), xGP

i is the midpoint (Gaussian point) of the
boundary segment of Gi

(k), whose length and outward unit normal are denoted as li
(k) and n

ðkÞ
ih , respectively.

Eq. (23) implies that only shape function values at some particular points along segments of boundary Gi
(k)

are needed and no explicit analytical form is required. This gives tremendous freedom in shape function
construction, and the shape functions do not need to form explicitly and their values at interest points can be
obtained by simple interpolation [7].

Note that using Eq. (20) to calculate ~BI ðxkÞ, it is straightforward to extend the ES-FEM for the domain
discretized by quadrilateral or n-sided polygonal elements, and all one needs to do is to create edge-based
smoothing domains as shown in Fig. 4.

Finally, we note that the trial function uh(x) is the same as that given in Eq. (2) and therefore the force
vector f, mass matrix M and damping matrix C in the ES-FEM are calculated in the same way as in the FEM.
In other words, the ES-FEM changes only the stiffness matrix. The spatial stability and convergence can be
proven in the same manner presented in [10] using the argument of orthogonal conditions within the frame
work of weak formulation. An alternative proof based on so-called weakened weak formulation using G space
theory is presented in [23], which is more general and applicable for models using incompatible shape
functions.

3. Forced and free vibration analyses

Using Eqs. (16) and (19), the discretized equation system in the ES-FEM can be expressed as

M€dþ C_dþ ~Kd ¼ f (24)

For simplicity, the Rayleigh damping is used, and the damping matrix C is assumed to be a linear
combination of M and ~K,

C ¼ aMþ b ~K (25)

where a and b are the Rayleigh damping coefficients.
Many schemes can be used to solve the second-order time dependent problems, such as the Newmark

method, Crank–Nicholson method, etc. [19]. In this work, the Newmark method is used. When the state at
t ¼ t0 ðd0; _d0; €d0Þ is known, we aim to find the new state at t1 ¼ t0+yDt ðd1; _d1; €d1Þ where 0.5pyp1, using the
following formulations:

aþ
1

yDt

� �
Mþ ðbþ yDtÞK

� �
d1 ¼ yDt f1 þ ð1� yÞDt f0

þ aþ
1

yDt

� �
Md0 þ

1

y
M_d0 þ ½b� ð1� yÞDt�Kd0 (26)

_d1 ¼
1

yDt
ðd1 � d0Þ �

1� y
y

_d0 (27)

€d1 ¼
1

yDt
ð_d1 � _d0Þ �

1� y
y

€d0 (28)

Without damping and forcing terms, Eq. (24) now reduces to a homogenous equation:

M€dþ ~Kd ¼ 0 (29)

A general solution of such a homogenous equation can be written as

d ¼ d̄ expðiotÞ (30)
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where t indicates time, d̄ is the eigenvector and o is natural frequency. On its substitution into Eq. (29), the
natural frequency o can be found by solving the following eigenvalue equation:

ð�o2Mþ ~KÞd̄ ¼ 0 (31)
4. A domain-based selective scheme: a combined ES/NS-FEM model

Volumetric locking appears when the Poisson’s ratio approaches to 0.5. The application of selective
formulations in the conventional FEM [20] has been found effectively to overcome such a locking and
hence the similar idea is employed in this paper. However, different from the FEM using selective
integration [20], our selective scheme will use two different types of smoothing domains selectively for two
different material ‘‘parts’’ (m-part and l-part). Since the node-based smoothing domains used in NS-FEM
were found effective in overcoming volumetric locking [8], and the l-part is known as the culprit of the volume
locking, we use node-based domains for the l-part and edge-based domains for the m-part. The details are
given below.

The material property matrix D for isotropic materials is first decomposed into

D ¼ D1 þD2 (32)

where D1 relates to the shearing modulus m ¼ E/[2(1+v)] and hence is termed as m-part of D, and D2 relates to
the Lame’s parameter l ¼ 2nm=ð1� 2nÞ and hence is termed as l-part of D. For plane strain cases, we have

D ¼

lþ 2m l 0

l lþ 2m 0

0 0 m

2
64

3
75 ¼ m

2 0 0

0 2 0

0 0 1

2
64

3
75þ l

1 1 0

1 1 0

0 0 0

2
64

3
75 ¼ D1 þD2 (33)

and for axis-symmetric problems:

D ¼ m

2 0 0 0

0 2 0 0

0 0 1 0

0 0 0 2

2
6664

3
7775þ l

1 1 0 1

1 1 0 1

0 0 0 0

1 1 0 1

2
6664

3
7775 ¼ D1 þD2 (34)

In our domain-based selective scheme proposed, we use the NS-FEM to calculate the stiffness matrix
related to l-part and the ES-FEM to calculate the one related to the m-part. The stiffness matrix of the
combined ES/NS-FEM model becomes

~K ¼
XNs

i¼1

ð ~B
i

1Þ
TD1

~B
i

1A
i
1|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

~K
ES-FEM
1

þ
XNn

j¼1

ð ~B
j

2Þ
TD2

~B
j

2A
j
2|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

~K
NS-FEM
2

(35)

where ~B
i

1 and Ai
1 are the smoothed strain matrix and area of the smoothing domain OðiÞs associated with

edge i, correspondingly, ~B
j

2 and A
j
2 are the smoothed strain matrix and area of the smoothing domain OðjÞn

associated with node j, correspondingly, and Nn is the total number of nodes located in the entire problem
domain.

5. Numerical implementation

5.1. Stability of the ES-FEM

In the NS-FEM [8] (or LC-PIM [3]), smoothing domains associated with the node is employed to
calculate the stiffness matrix. This works well for static problems. However, for vibration analysis, the
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NS-FEM (or LC-PIM) is unstable because of the presence of spurious non-zero energy modes. This is due to
the under-integration of the weak form inherent in the nodal integration approaches [12–14].

In the standard FEM using triangular meshes and linear shape functions, the integration on the weak form
is based on elements. For each element, only one Gauss point is needed to calculate. This implies that the
number of Gauss points to calculate equals to the number of elements of the problem. Such an FEM model is
known stable in dynamic analysis and has no spurious non-zero energy modes.

In the ES-FEM using triangular meshes, the smoothing domains used are associated with edges
and the strain (or stress) on each domain is constant. Therefore, each domain is considered equivalent
to using one Gauss point to calculate the weak form. Because the number of edges is always larger
than the number of elements in any meshes, or in other words, the number of Gauss points to
calculate the weak form in the ES-FEM is larger than that in the FEM, the ES-FEM is also very
stable and has no spurious non-zero energy modes. Therefore, the ES-FEM is well suited for the dynamic
analysis.
5.2. Standard patch test

Satisfaction of the standard patch test requires that the displacements of all the interior nodes of the
patch follow ‘‘exactly’’ (to machine precision) the same linear function of the imposed displacement
on the boundary of the patch. A domain discretization of a square patch using 32 irregular triangular
elements is shown in Fig. 5. The following error norm in displacements is used to examine the computed
results:

ed ¼

Pndof
i¼1 jui � uh

i jPndof
i¼1 juij

� 100% (36)

where ui is the exact solution, uh
i is the numerical solution and ndof is the number of degrees of freedom (dofs)

of the system.
The parameters are taken as E ¼ 100, v ¼ 0.3 and linear displacement field is given by

u ¼ x

v ¼ y (37)
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It is found that the ES-FEM can pass the standard patch test within machine precision with the error norm
in displacements: ed ¼ 1.28e�11 (%).

5.3. Mass matrix

In dynamic analysis, the lumped mass matrix for the linear triangular element is

M½ �e ¼
rtA

3
I½ � (38)

where [I] is the identity matrix of size 6, A is the area of the element, r and t are the mass density and the
thickness of the element, respectively. The diagonal form of lumped mass matrix shows superiority over the
consistent mass matrix in solving the dynamics equations.

6. Numerical examples

In this section, some examples will be presented to demonstrate the properties of the present method. In
some cases, to emphasize the advantages of the ES-FEM, the results of the present method will be compared
with those of the FEM using triangular elements (FEM-T3), 4-node quadrilateral (FEM-Q4), 8-node
quadratic elements (FEM-Q8) and NS-FEM using triangular elements.

The error norm of displacement is given by Eq. (36), and the error norm of energy is calculated by

ee ¼ jEnum � Eexactj
1=2 (39)

where the total strain energy of numerical solution Enum and the total strain energy of exact solution Eexact is
calculated by

Enum ¼
1
2
dTKnumd (40)

Eexact ¼
1

2
lim

Ne!1

XNe

i¼1

Z
Oi

eTi Dei dO (41)

where ei is the strain of exact solution of the ith element. In actual computation using Eq. (41), we will use a
very fine mesh (Ne-N) to calculate the exact strain energy Eexact.

In the ES-FEM, the value of strains (or stresses) at the node i will be average value of strains (or stresses) of
the smoothing domains O(k) associated with edge k, and are calculated numerically by

~�i ¼
1

AðiÞ

XN ðiÞs

k¼1

~�kAðkÞ (42)

where N ðiÞs is the total number of edges (sides) connecting directly to node i, ~�k and A(k) are the strain

and the area of the smoothing domain O(k) associated with edge k around the node i, respectively, and

AðiÞ ¼
PN

ðiÞ
s

k¼1A
ðkÞ.

6.1. A cantilever subjected to a parabolic traction at the free end

A cantilever with length L and height D is studied as a benchmark problem here, which is subjected to a
parabolic traction at the free end as shown in Fig. 6. The cantilever is assumed to have a unit thickness so that
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plane stress condition is valid. The analytical solution is available and can be found in a textbook by
Timoshenko and Goodier [18].

ux ¼
Py

6EI
ð6L� 3xÞxþ ð2þ nÞ y2 �

D2

4

� �� �

uy ¼ �
P

6EI
3ny2ðL� xÞ þ ð4þ 5nÞ

D2x

4
þ ð3L� xÞx2

� �
(43)

where the moment of inertia I for a beam with rectangular cross section and unit thickness is given by
I ¼ D3/12.

The stresses corresponding to the displacements Eq. (43) are

sxxðx; yÞ ¼
PðL� xÞy

I
; syyðx; yÞ ¼ 0; txyðx; yÞ ¼ �

P

2I

D2

4
� y2

� �
(44)

The related parameters are taken as E ¼ 3.0� 107 kPa, v ¼ 0.3, D ¼ 12m, L ¼ 48m and P ¼ 1000N. In the
computations, the nodes on the left boundary are constrained using the exact displacements obtained from
Eq. (43) and the loading on the right boundary uses the distributed parabolic shear stresses in Eq. (44). Two
types of meshes using triangular and quadrilateral elements are used as shown in Fig. 7.
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Figs. 8 and 9 compare the results of displacements and relative errors of the ES-FEM with the FEM-T3,
NS-FEM and FEM-Q4. It is shown that the FEM-T3 is very stiff while the NS-FEM is very soft compared to
the exact solution. The ES-FEM is stiffer than the NS-FEM and softer than the FEM-T3, and is very close
to the exact solution. Compared with all methods, the ES-FEM is best and even better than the FEM-Q4
(see Fig. 9). From Figs. 10 and 11, it is observed that all the computed stresses using the ES-FEM are in a good
agreement with the analytical solutions.

The convergence of the strain energy is shown in Fig. 12, and the convergence rates of error norms in
displacement and energy are demonstrated in Figs. 13 and 14. As expected, the FEM modes behave
overly-stiff and hence give lower bounds, and NS-FEM behaves overly-soft and gives an upper bound. The
ES-FEM has a very close-to-exact stiffness and hence the results are very accurate: the ES-FEM results
are the most accurate. It is observed that all strain energy, displacement and energy error norms of the
ES-FEM are even better than those of the FEM-Q4. Superconvergence is also observed for the ES-FEM: the
convergence rates are much larger than the theoretical value of 2.0 in displacement norm and 1.0 in energy
norm.
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Fig. 15 compares the computation time of different methods using the same direct solver. It is found that
with the same sets of nodes, the computation time of the ES-FEM is longer than those of the FEM-Q4 and the
FEM-T3, but shorter than that of the NS-FEM. However, when the efficiency of computation (computation
time for the same accuracy) in terms of both energy and displacement error norms is considered, the ES-FEM
is the most efficient as shown in Figs. 16 and 17. These results show a special advantage of the ES-FEM
against the FEM-Q4 because the ES-FEM only uses triangular elements which are very favorite and easy in
automated mesh generation.

6.2. Infinite plate with a circular hole

Fig. 18 represents a plate with a central circular hole of radius a ¼ 1m, subjected to a unidirectional tensile
load of s ¼ 1.0N/m at infinity in the x-direction. Due to its symmetry, only the upper right quadrant of the
plate is modeled. Plane strain condition is considered and E ¼ 1.0� 103N/m2, v ¼ 0.3. Symmetric conditions
are imposed on the left and bottom edges, and the inner boundary of the hole is traction free. The analytical
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solution for the stress is [18]

s11 ¼ 1�
a2

r2
3

2
cos 2yþ cos 4y

� �
þ

3a4

2r4
cos 4y

s22 ¼ �
a2

r2
1

2
cos 2y� cos 4y

� �
�

3a4

2r4
cos 4y

t12 ¼ �
a2

r2
1

2
sin 2yþ sin 4y

� �
þ

3a4

2r4
sin 4y (45)

where (r, y) are the polar coordinates and y is measured counterclockwise from the positive x-axis. Traction
boundary conditions are imposed on the right (x ¼ 5.0m) and top (y ¼ 5.0m) edges based on the exact
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solution, Eq. (45). The displacement components corresponding to the stresses are

u1 ¼
a

8m
r

a
ðkþ 1Þ cos yþ 2

a

r
ðð1þ kÞ cos yþ cos 3yÞ � 2

a3

r3
cos 3y

� �

u2 ¼
a

8m
r

a
ðk� 1Þ sin yþ 2

a

r
ðð1� kÞ sin yþ sin 3yÞ � 2

a3

r3
sin 3y

� �
(46)

where m ¼ E/(2(1+v)) and k is defined in terms of Poisson’s ratio by k ¼ 3–4v for plane strain cases. Two
types of meshes using triangular and quadrilateral elements are used as shown in Fig. 19.

Figs. 20 and 21 show the comparison of displacements of the ES-FEM with the FEM-T3, NS-FEM and
FEM-Q4. It is again showed that the FEM-T3 is very stiff while the NS-FEM is very soft compared to the
exact solution. The results of the ES-FEM are best and even better than those of the FEM-Q4. From Figs. 22
and 23, it is observed that all the computed stresses using the ES-FEM are in a good agreement with the
analytical solutions. It is also noticed that the present stresses are very smooth though no post-processing is
performed for them.

The convergence of the strain energy is shown in Fig. 24, and the convergence rates of the error norms in
displacement and energy are plotted in Figs. 25 and 26. As expected, the FEM modes behave overly-stiff and
hence give lower bounds, and NS-FEM behaves overly-soft and gives an upper bound. The ES-FEM has a
quite close-to-exact stiffness and hence the results are very accurate: the ES-FEM results are the most
accurate. It is again observed that all strain energy, and displacement and energy error norms of the ES-FEM
are even better than those of the FEM-Q4. A weak superconvergence is also observed for the ES-FEM: the
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convergence rates are a little larger than the theoretical value of 2.0 in displacement norm and 1.0 in energy
norm.

Fig. 27 shows the error in displacement for nearly incompressible material when Poisson’s ratio is changed
from 0.4 to 0.4999999. The results show that the domain-based selective ES/NS-FEM can overcome
the volumetric locking for nearly incompressible materials and gives even better results than those of the
NS-FEM, thanks to the super accuracy of the ES-FEM.

6.3. Free vibration analysis of a cantilever beam

In this example, a cantilever beam is studied, with L ¼ 100mm, H ¼ 10mm, thickness t ¼ 1.0mm,
Young’s modulus E ¼ 2.1� 104 kgf/mm4, Poisson’s ratio v ¼ 0.3, mass density r ¼ 8.0� 10�10 kgf s2/mm4.
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Table 1

First 12 natural frequencies (� 104Hz) of a cantilever beam

No. of elements No. of nodes NS-FEM FEM-T3 FEM-Q4 ES-FEM Reference

FEM-Q4

100� 10

(10� 1) 10 4-node elements

for FEM-Q4 and 20

triangular elements for

others methods

22 0.0576 0.1692 0.0992 0.1048 0.0824

0.3243 0.9163 0.5791 0.6018 0.4944

0.7441 1.2869 1.2834 1.2833 1.2824

0.9875 2.1843 1.4830 1.5177 1.3022

1.0112 3.5942 2.6183 2.6362 2.3663

1.1346 3.8338 3.8140 3.7724 3.6085

1.2783 5.0335 3.8824 3.8559 3.8442

1.5712 6.2421 5.1924 5.0349 4.9674

2.3697 6.4154 6.2345 6.0827 6.3960

3.2685 7.5940 6.4846 6.1520 6.4023

3.7064 8.4790 7.7039 7.0519 7.8853

3.8642 8.7033 8.4632 7.7212 8.9290

(20� 2) 40 4-node elements

for FEM-Q4 and 80

triangular elements for

others methods

63 0.0675 0.1117 0.0870 0.0853 0.0824

0.4032 0.6539 0.5199 0.5078 0.4944

1.0518 1.2843 1.2830 1.2828 1.2824

1.2810 1.6748 1.3640 1.3246 1.3022

1.6467a 2.9554 2.4685 2.3783 2.3663

1.8786 3.8424 3.7477 3.5784 3.6085

2.7823a 4.3866 3.8378 3.8298 3.8442

3.0926 5.8836 5.1322 4.8533 4.9674

3.6783 6.3751 6.3585 6.1527 6.3960

3.8089 7.4046 6.5731 6.3182 6.4023

4.0543a 8.8210 8.0342 7.4419 7.8853

4.1605a 8.9411 8.8187 8.6776 8.9290

(40� 4) 160 4-node elements

for FEM-Q4 and 320

triangular elements for

others methods

205 0.0778 0.0906 0.0835 0.0827 0.0824

0.4654 0.5409 0.5004 0.4950 0.4944

1.2199 1.2831 1.2827 1.2826 1.2824

1.2818 1.4161 1.3174 1.3006 1.3022

1.6689a 2.5570 2.3926 2.3554 2.3663

2.2012 3.8433 3.6462 3.5778 3.6085

3.2517a 3.8786 3.8431 3.8408 3.8442
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ARTICLE IN PRESS

Table 1 (continued )

No. of elements No. of nodes NS-FEM FEM-T3 FEM-Q4 ES-FEM Reference

FEM-Q4

100� 10

3.3270 5.3087 5.0150 4.9029 4.9674

3.8344 6.3935 6.3883 6.2867 6.3960

4.5248 6.8093 6.4561 6.3774 6.4023

4.6406a 8.3473 7.9398 7.6987 7.8853

5.3275a 8.9183 8.9057 8.8751 8.9290

aSpurious non-zero energy modes.

spurious non-zero energy mode

spurious non-zero energy mode

spurious non-zero energy mode spurious non-zero energy mode

Fig. 28. First 12 modes of the cantilever beam by the NS-FEM.
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A plane stress problem is considered. Using the Euler–Bernoulli beam theory we can get its funda-
mental frequency f1 ¼ 0.08276� 104Hz as a reference. Three kinds of regular meshes are used in the
analysis using the FEM-T3, NS-FEM, FEM-Q4 and ES-FEM for comparison purpose. Numerical results
using the FEM-Q4 with a very fine mesh (100� 10) for the same problem are computed and used as reference
solutions.

Table 1 lists the first 12 natural frequencies of the beam, and the first 12 modes using the NS-FEM and the
ES-FEM are demonstrated in Figs. 28 and 29. It is observed that (1) the ES-FEM does not have any of the
spurious non-zero energy modes which appear in the NS-FEM that is known overly-soft; (2) the natural
frequencies obtained using the ES-FEM is much larger than those of the FEM-T3 that is known overly-stiff
and (3) the ES-FEM results are generally closest to the reference solution, and they converge faster even than
the FEM-Q4 with the same sets of nodes used. Because the natural frequencies can be used as a good indicator
on assessing the stiffness of a model, the above findings confirms again that the ES-FEM has very close-to-
exact stiffness.

6.4. Free vibration analysis of a shear wall

In this example, a shear wall with four openings (see Fig. 30) is analyzed, which has been solved using BEM
by Brebbia et al. [21]. The bottom edge is fully clamped. Plane stress case is considered with E ¼ 10,000N/m2,
v ¼ 0.2, t ¼ 1.0m and r ¼ 1.0N/m3. Two types of meshes using triangular and quadrilateral elements are used
as shown in Fig. 31. Numerical results using the FEM-Q8 with 6104 nodes and 1922 elements for the same
problem are computed and used as reference solutions.
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Table 2

First 12 natural frequencies (� 104Hz) of a shear wall

No. of elements No. of

nodes

NS-FEM FEM-T3 FEM-Q4 ES-FEM Reference (FEM-Q8)

(6104 nodes 1922

elements)

Reference [21]

476 4-node

elements for

FEM-Q4 and 952

triangular

elements for

others methods

559 0.5816 0.6826 0.6599 0.6525 0.6400 0.6618

2.0726 2.3295 2.2586 2.2402 2.2128 2.2858

2.3920 2.4353 2.4272 2.4256 2.4192 2.4332

3.2413 3.9959 3.7999 3.7380 3.6512 3.7666

4.3715 5.0749 4.8831 4.8203 4.7656 5.0761

4.6819a 5.9723 5.8393 5.7976 5.7506 5.9346

5.4214 6.4878 6.3267 6.2751 6.2328 6.4515

5.4442a 7.2181 7.0696 7.0009 6.9620 7.2463

5.8441 7.5249 7.3216 7.2505 7.2052

6.0130a 7.6796 7.4967 7.4321 7.4144

6.1910a 8.1276 8.0134 7.9742 7.9634

6.2190a 8.5451 8.2987 8.2243 8.2368

1904 4-node

elements for

FEM-Q4 and

3808 triangular

elements for

others methods

2072 0.6160 0.6567 0.6467 0.6436 0.6400 0.6618

2.1569 2.2557 2.2278 2.2206 2.2128 2.2858

2.4083 2.4255 2.4220 2.4211 2.4192 2.4332

3.4679 3.7814 3.7003 3.6767 3.6512 3.7666

4.6052 4.8771 4.8040 4.7807 4.7656 5.0761

4.8778a 5.8305 5.7798 5.7640 5.7506 5.9346

5.5872 6.3222 6.2634 6.2448 6.2328 6.4515

5.6766a 7.0656 6.9986 6.9734 6.9620 7.2463

6.0962 7.3212 7.2444 7.2196 7.0252

6.5288a 7.5023 7.4421 7.4192 7.4144

6.6931a 8.0231 7.9810 7.9672 7.9634

6.7808a 8.3447 8.2621 8.2363 8.2368

aSpurious non-zero energy modes.
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Fig. 31. Domain discretization using triangular and 4-node quadrilateral elements of the shear wall with four openings.
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Table 2 lists the first 12 natural frequencies, and the first 12 modes using the NS-FEM and the ES-FEM are
demonstrated in Figs. 32 and 33. It is again observed that (1) the ES-FEM does not have any of the spurious
non-zero energy modes which appear in the NS-FEM that is known overly-soft; (2) the natural frequencies
obtained using the ES-FEM is much larger than those of the FEM-T3 that is known overly-stiff and (3) the
ES-FEM results are generally closest to the reference solution, and they converge faster even than the
FEM-Q4 with the same sets of nodes used. This example confirms again that the ES-FEM has very close-to-
exact stiffness.
spurious non-zero energy eigenmode

spurious non-zero energy eigenmode

spurious non-zero energy eigenmode

spurious non-zero energy eigenmode spurious non-zero energy eigenmode

Fig. 32. First 12 modes of the shear wall by the NS-FEM.
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Fig. 33. First 12 modes of the shear wall by the ES-FEM.
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6.5. Free vibration analysis of a connecting rod

A free vibration analysis of a connecting rod is performed as shown in Fig. 34. Plane stress problem is considered
with E ¼ 10GPa, v ¼ 0.3, r ¼ 7.8� 103kg/m3. The nodes on the left inner circumference are fixed in two
directions. Two types of meshes using triangular and quadrilateral elements are used as shown in Fig. 35. Numerical
results using the FEM-Q4 and FEM-Q8 for the same problem are computed and used as reference solutions.

From the results in Table 3, it is observed that the ES-FEM gives the comparable results as those of the
FEM-Q4 using more nodes than the ES-FEM. Again, Figs. 36 and 37 show that the ES-FEM does not have
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Fig. 34. Geometric model and boundary conditions of an automobile connecting bar.
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Fig. 35. Domain discretization using triangular and 4-node quadrilateral elements of the automobile connecting bar.
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any of the spurious non-zero energy modes appearing in the NS-FEM. This example re-confirms the fact that
ES-FEM model has very close-to-exact stiffness, and expected to perform well in vibration analysis.
6.6. Forced vibration analysis of a cantilever beam

A benchmark cantilever beam is investigated using the Newmark method. It is subjected to a tip harmonic
loading f(t) ¼ cosoft in y-direction. Plane strain problem is considered with non-dimensional numerical
parameters as L ¼ 4.0, H ¼ 1.0, t ¼ 1.0, E ¼ 1.0, v ¼ 0.3, r ¼ 1.0, a ¼ 0.005, b ¼ 0.272, of ¼ 0.05, y ¼ 0.5.1
1In Sections 6.6 and 6.7, we choose to use non-dimensional parameters because the purpose of these examples is just to examine our

numerical results, and no physical implications. Any set of physical units is applicable to our results, as long as these units are consistent

for all the inputs and outputs.
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Table 3

First 12 natural frequencies (Hz) of a connecting bar

No. of

elements

No. of

nodes

NS-FEM FEM-T3 ES-FEM Reference (FEM-

Q4) (537 nodes 429

elements)

Reference (FEM-

Q4) (1455 nodes

1256 elements)

Reference (FEM-

Q8) (10,002 nodes

3125 elements)

574 triangular

elements

(mesh 2)

373 4.9420 5.3174 5.1368 5.1369 5.1222

20.8051 22.9448 22.0595 22.050 21.840

48.3890 49.6982 49.3809 49.299 49.115

48.4864 54.0642 52.0420 52.232 51.395

84.9250 96.8632 92.7176 93.609 91.787

97.6804 114.3134 109.5887 108.59 106.15

114.0340 142.4456 132.6795 134.64 130.14

123.3202a 163.9687 158.2376 159.45 156.14

143.6428a 169.2762 158.9530 160.59 157.70

144.6607a 204.5709 201.3746 203.52 200.06

151.4276 210.1202 204.8442 208.68 204.41

161.9533a 210.7405 209.2773 209.02 204.99

2296

triangular

elements

(mesh 3)

1321 5.0481 5.2084 5.1246 5.1244 5.1222

21.4886 22.2661 21.8805 21.909 21.840

48.8798 49.3544 49.1726 49.211 49.115

50.4006 52.4947 51.5181 51.657 51.395

89.6102 93.8422 91.9305 92.390 91.787

92.6458a 109.2835 106.8473 107.51 106.15

103.4429 134.5815 130.5546 131.48 130.14

125.6500 159.7354 156.3497 157.51 156.14

151.6215a 159.9686 157.8486 158.69 157.70

152.0064a 203.3543 200.9013 201.69 200.06

155.5444 207.5036 204.2601 206.04 204.41

188.5849a 209.1795 206.5273 209.92 204.99

aSpurious non-zero energy modes.

spurious non-zero 
energy eigenmode

spurious non-zero energy eigenmode

spurious non-zero energy eigenmode

spurious non-zero energy eigenmode

Fig. 36. First 12 modes of the connecting bar by the NS-FEM.
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Fig. 38. Transient responses of a cantilever beam subjected to a harmonic loading.

Fig. 37. First 12 modes of the connecting bar by the ES-FEM.
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The domain is represented with 10� 4 elements. In FEM, all FEM-T3, FEM-Q4 and FEM-Q8 are used for
comparison. The time step Dt ¼ 1.57 is used for time integration. From the dynamic responses in Fig. 38, it is
seen that the amplitude of the ES-FEM is closer to that of the FEM-Q8 as compared to the FEM-Q4. This
shows that the ES-FEM using triangular elements can be applied to the vibration analysis with excellent
accuracy. This may be partially due to the fact that ES-FEM model has very close-to-exact stiffness.
6.7. Forced vibration analysis of a spherical shell

As shown in Fig. 39, a spherical shell is studied that subjected to a concentrated loading at its apex. Two types
of meshes using triangular and quadrilateral elements for half of the spherical shell are used as shown in Fig. 40.
The asymmetric elements are used with non-dimensional numerical parameters given as R ¼ 12, t ¼ 0.1,
f ¼ 10.91, y ¼ 0.5, E ¼ 1.0, v ¼ 0.3, r ¼ 1.0. The loading is first in the harmonic form f(t) ¼ cosoft and its
dynamic responses are demonstrated in Fig. 41 with of ¼ 0.05, and time step Dt ¼ 5. No damping effect is
included. Again, it is seen that the amplitude of the ES-FEM is much more accurate than that of FEM-T3, and
comparable to that of the FEM-Q4. Then a constant step load f(t) ¼ 1 is added at apex since t ¼ 0. Without
0 0.5 1 1.5 2
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12.2

x

y

0 0.5 1 1.5 2
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12.2
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y

Fig. 40. Domain discretization of half of the spherical shell using triangular and 4-node quadrilateral elements.

t

R
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�

Fig. 39. A spherical shell.
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Fig. 41. Transient responses of the spherical shell subjected to a harmonic loading.
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Fig. 42. Transient responses of the spherical shell subjected to a constant step loading using the ES-FEM.
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damping, it is seen from Fig. 42 that the deflection at apex tends to be a constant value with the elapse of time.
With the inclusion of damping (a ¼ 0.005, b ¼ 0.272), the response is damped out more quickly.

7. Conclusion

In this work, an edge-based smoothed finite element method (ES-FEM) is proposed for stable and accurate
solutions. The method is applied to static, free and forced vibration analyses of 2D solid mechanics problems.
Through the formulation and numerical examples, some conclusions can be drawn as follows:
(a)
 The ES-FEM can use general n-sided polygonal elements including triangular elements. The extension of
the method for 3D problems using tetrahedral elements is also straightforward.
(b)
 The ES-FEM using triangular elements is stable and accurate without using any parameter for
stabilization. The formulation is straightforward and the implementation is as easy as the FEM, without
the increase of degree of freedoms. The ES-FEM often shows superconvergence behavior with ultra-
accurate results: The numerical results of the ES-FEM using triangular elements are even more accurate
than the FEM using quadrilateral elements with the same sets of nodes.
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(c)
 With the same set of nodes and the same direct solver are used, the computation time of the ES-FEM is
longer than those of the FEM-Q4 and the FEM-T3, but shorter than that of the NS-FEM. However, when
the efficiency of computation (computation time for the same accuracy) in terms of both energy and
displacement error norms is considered, the ES-FEM is the most efficient.
(d)
 A domain-based selective ES/NS-FEM is effective in overcoming the volumetric locking for problems of
nearly incompressible materials.
(e)
 For the free vibration analysis, the ES-FEM using triangular elements gives the more accurate results and
higher convergence rate than the FEM-Q4. No spurious non-zero energy modes appear in vibration
analysis and hence the ES-FEM is very stable temporally.
(f)
 For the forced vibration analysis, vibration period obtained using the ES-FEM using triangular elements
is more accurate compared to the FEM-Q4, and the vibration amplitude is closer to that of the higher-
order FEM-Q8.
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